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A B S T R A C T

Solar-Induced chlorophyll Fluorescence (SIF) can serve as an early and non-invasive indicator of the functioning
and status of vegetation due to its close link to photosynthetic activity. Most existing approaches retrieve SIF at
around few discrete absorption lines. However, the full SIF spectrum can provide more information on the
functional status of photosynthetic machinery. European Space Agency's FLuorescence EXplorer (FLEX) mission,
to be launched in 2022, is dedicated to the accurate reconstruction of the full SIF spectrum over land and
incorporates the heights and positions of the two SIF peaks and the total fluorescence emission (spectrally-
integrated value) into planned Level-2 products.

In this paper, an advanced Fluorescence Spectrum Reconstruction (aFSR) method was proposed to reconstruct
the full SIF spectrum by capitalizing on the features of existing methods. The aFSR method used linear com-
binations of basis spectra to approximate the spectra of SIF and the reflectance factor and exploited all available
bands within the spectral range of SIF emission for spectral fitting of SIF and reflected radiance. The number of
basis spectra of the reflectance factor used was self-adaptively determined based on the Bayesian information
criterion. A comprehensive intercomparison between the aFSR method and three other methods (i.e., the
Fluorescence Spectrum Reconstruction method, the Full-spectrum Spectral Fitting Method, and the SpecFit
method) was performed using simulated and experimental datasets. For simulated datasets, the impact of
spectral resolution (SR), signal-to-noise ratio (SNR), atmospheric correction, canopy structure, leaf biochemical
parameters and directional effect on the accuracy of SIF spectrum reconstruction was considered. Results show
that while all methods could achieve the accuracy standard set by the FLEX mission (average absolute relative
error of spectrally-integrated SIF < 10%) when spectral resolving power and SNR were high (e.g., SR ≤ 0.3 nm
and SNR ≥ 700), aFSR generally provided the highest reconstruction accuracy. For the first time we investigated
the performance of the SIF spectrum reconstruction on 3-D radiative transfer (RT) simulations and compared
with that on typical 1-D simulations. The increase of canopy heterogeneity from 1-D to 3-D did not noticeably
deteriorate the accuracy of aFSR, implying that aFSR was applicable to different canopy structures. The aFSR
method was also more robust than other methods as it was less affected by atmospheric correction and direc-
tional effect. For the experimental dataset, the SIF spectra reconstructed by aFSR agreed well with literature in
terms of shape, magnitude and diurnal variation and were in agreement with the other methods: the coefficient
of determination and the root-mean-square error between the reconstruction results of aFSR and the average of
the SIF spectra reconstructed through three other methods were higher than 0.93 and lower than
0.09 W·m−2·sr−1·μm−1, respectively.

https://doi.org/10.1016/j.rse.2018.10.021
Received 1 February 2018; Received in revised form 19 September 2018; Accepted 14 October 2018

⁎ Corresponding author at: School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100083, PR China.

1 The computer codes of the aFSR method (in Matlab) are available upon request.
E-mail address: zhaofeng@buaa.edu.cn (F. Zhao).

Remote Sensing of Environment 219 (2018) 233–246

Available online 17 October 2018
0034-4257/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2018.10.021
https://doi.org/10.1016/j.rse.2018.10.021
mailto:zhaofeng@buaa.edu.cn
https://doi.org/10.1016/j.rse.2018.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2018.10.021&domain=pdf


1. Introduction

Solar-Induced chlorophyll Fluorescence (SIF) is an electromagnetic
signal emitted by chlorophyll molecules after the absorption of solar
radiation (Porcar-Castell et al., 2014). It is one of the three dissipation
pathways for the absorbed solar light energy: the energy can be used to
drive photosynthesis, excess energy is re-emitted as SIF or dissipated as
heat (Maxwell and Johnson, 2000). The three processes are closely
interrelated. Therefore, SIF carries plant physiological information, and
it can serve as a direct and non-invasive indicator of the functional
status of photosynthetic machinery (Malenovsky et al., 2009; Meroni
et al., 2009; Rascher et al., 2015). SIF has been used to estimate gross
primary production (Guanter et al., 2014; Zhang et al., 2014; Damm
et al., 2015; Zhang et al., 2016; Sun et al., 2017) and detect plant stress
in an early stage (Meroni et al., 2008; Ač et al., 2015; Rossini et al.,
2015).

SIF is emitted in the spectral range of 640–850 nm and is char-
acterized by two peaks centered at around 685 nm and 740 nm, re-
spectively (Meroni et al., 2009). It is superimposed on the signal of
scattered solar radiation and thus cannot be measured directly. The
decoupling of the SIF signal from scattered radiation is challenging, also
since the SIF radiance generally constitutes only a small fraction (1–5%
in the near-infrared) of the upwelling radiance reaching the sensor
(Meroni et al., 2009).

Despite these difficulties, there are several algorithms that allow to
retrieve SIF signal. For a complete review, please refer to Meroni et al.
(2009). Since then, more strategies have been proposed to retrieve SIF
radiance for airborne and spaceborne measurements (Joiner et al.,
2011; Guanter et al., 2012; Rascher et al., 2015; Wolanin et al., 2015).
Most of the algorithms retrieve SIF radiance at around few discrete
solar or telluric absorption lines, e.g., the potassium (K) I solar Fraun-
hofer line at 656 nm, and the O2-A and O2-B telluric absorption lines
centered at 687 nm and 761 nm, respectively.

However, the full chlorophyll fluorescence spectrum can provide
more information than the fluorescence radiance at the few absorption
lines. The ratio between the maximum fluorescence in the red and far-
red regions of the chlorophyll fluorescence spectra under artificial il-
lumination is shown to be affected by various physiological and en-
vironmental factors: it is closely related to leaf chlorophyll content (Cab)
due to the re-absorption of red fluorescence by chlorophyll
(Buschmann, 2007), and it can also serve as an indicator of herbicide
treatment (Rinderle and Lichtenthaler, 1988; Zhao et al., 2015a),
chilling stress (Agati et al., 1996) and nitrogen deficiency (Ač et al.,
2015). Recently, the red and far-red maxima of the SIF spectrum were
retrieved from airborne hyperspectral imagery of mature loblolly and
their ratio is found to be linearly related to canopy light use efficiency
over the diurnal cycle (Middleton et al., 2017). Some other parameters
derived from the full fluorescence spectra also showed their applica-
tions. The spectral position and full width at half maximum of the red
and far-red peaks of the spectrum of laser-induced chlorophyll fluor-
escence, as well as the curve area, were shown to be related to nutrient
stress (Subhash and Mohanan, 1997). Van Wittenberghe et al. (2013)
found that the ratio between the peaks of fluorescence yield in the red
and far-red regions is more effective than chlorophyll content in in-
dicating the difference between low and high traffic emission exposure.
Verrelst et al. (2016) performed a simulation study on the relationship
between SIF and net photosynthesis of the canopy (NPC). It was found
that the correlation between SIF at different wavelengths and NPC is
higher when exploiting the full SIF spectrum than when using SIF at 1–4
discrete bands.

Because of the potentially wide applications of the SIF spectrum on
quantifying photosynthetic activity and monitoring plant stress,
European Space Agency (ESA)'s FLuorescence EXplorer (FLEX) mission
(to be launched in 2022) is dedicated to the accurate reconstruction of
the full SIF spectrum over land and incorporates the heights and posi-
tions of the two SIF peaks and the total fluorescence emission

(spectrally-integrated value) into planned Level-2 (L2) products (ESA,
2015; Coppo et al., 2017; Drusch et al., 2017). As the first satellite
mission specifically designed to retrieve the SIF signal, FLEX can ob-
serve globally at a spatial resolution of 300 m to address the scale of
agricultural management units. Therefore, spatial dynamics of the SIF
spectrum and photosynthesis can be studied with this data source.

Several methods have been proposed recently to reconstruct the full
SIF spectrum. They can be classified into three categories depending on
whether and how the atmospheric effect is considered. The first cate-
gory consists of the Fluorescence Spectrum Reconstruction (FSR)
method (Zhao et al., 2014) and the Full-spectrum Spectral Fitting
Method (F-SFM) (Liu et al., 2015) for top-of-canopy (TOC) measured
data. The FSR method retrieves SIF radiance at several absorption lines
by the Spectral Fitting Method (Meroni et al., 2010) and uses linear
combination of basis spectra to fit the retrieved SIF radiance. The F-SFM
method introduces an iterative approach and uses the apparent re-
flectance factor outside the major absorption wells to approximate the
reflectance factor inside and near those wells. It uses linear combination
of basis spectra to fit the apparent reflectance factor outside the major
absorption wells and SIF inside and near those wells. Cogliati et al.
(2015b) proposed a two-step approach to reconstruct SIF spectra with
top-of-atmosphere (TOA) measured data, which falls into the second
category. Firstly, atmospheric correction is applied; then, the SpecFit
method is used to reconstruct the full SIF spectrum. The SpecFit method
can also be directly used for TOC measured data. It uses specific
mathematical functions to model the spectra of SIF and the reflectance
factor and applies curve fitting within the full spectral region of SIF
emission. The third category inverts coupled radiative transfer (RT)
models of surface-atmosphere systems to reconstruct SIF spectra with
TOA measured data, as reported in the study by Verhoef et al. (2018).
In this approach, the RT of atmosphere and vegetation are coupled to
simulate TOA radiance. Then, by model inversion via multi-sensor
optimization, the SIF spectrum was retrieved along with some im-
portant canopy parameters (e.g., chlorophyll content (Cab) and leaf area
index (LAI)).

As can be seen above, the FSR, F-SFM, and SpecFit methods can all
be used to reconstruct the SIF spectrum from TOC measured or TOA
atmospherically corrected data (detailed description of these methods
can be found in the Supplementary Data). When determining the
number of basis spectra to be used, the FSR and F-SFM methods in-
troduce subjectivity. Besides, they do not fully exploit all available in-
formation compared to the SpecFit method. As to the SpecFit method, it
uses more coefficients than the FSR and F-SFM methods to approximate
the spectrum of SIF. However, it is challenging to accurately determine
all the coefficients.

The present work overcomes the above limitations to reconstruct
the SIF spectrum from TOC measured or TOA atmospherically corrected
data. An advanced fluorescence spectrum reconstruction (aFSR)
method was proposed by capitalizing on the features of the existing
methods and introducing a criterion for adaptively determining the
number of basis spectra of the reflectance factor to be used for the re-
construction. This method was evaluated with TOC measured and TOA
atmospherically corrected data by systematic comparison with the FSR,
F-SFM, and SpecFit methods. Three different simulated datasets and an
experimental dataset were used for the evaluation, by considering the
impacts of sensor spectral configurations of spectral resolution (SR) and
signal-to-noised ratio (SNR), atmospheric correction, canopy structural
and biophysical characteristics, and directional effects. The physically-
based method by Verhoef et al. (2018) was not included here since it
applies for TOA data rather than TOC measured or TOA atmo-
spherically corrected data.

The rest of the paper is organized as follows: in Section 2, the aFSR
method and the datasets used in this study are described; a compre-
hensive intercomparison of the aFSR method and three other methods is
performed in Section 3; discussions on the comparison results are pre-
sented in Section 4; Section 5 gives the concluding remarks.
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2. Methods and materials

2.1. The advanced fluorescence spectrum reconstruction (aFSR) method

The TOC total upwelling radiance L(λ) can be approximated by the
following equation (Meroni et al., 2009):

L E R F( ) ( ) ( ) ( )= + (1)

where λ is wavelength, and E(λ), R(λ) and F(λ) are the incident irra-
diance, the canopy reflectance factor, and SIF, respectively. Fig. 1
shows the exemplary spectra of TOC total upwelling radiance (L) and
SIF radiance (F). The shaded region indicates the spectrally-integrated
SIF.

The aFSR method performs curve fitting within the full spectral
region of SIF emission. The spectra of both the reflectance factor and
SIF are modeled as linear combinations of basis spectra (a set of spectra
extracted from training data with which one can fit any spectrum of the
reflectance factor or SIF). Therefore, Eq. (1) becomes:
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where L ( ) is the modeled total upwelling radiance, ϕrj(λ) and ϕfi(λ)
are the basis spectra of the reflectance factor and SIF, respectively, crj
and cfi are the coefficients of the basis spectra to be determined, Nr and
Nf are the numbers of basis spectra of the reflectance factor and SIF
used, respectively.

To determine the coefficients (crj and cfi), the optimization problem

(weighted linear least squares) in Eq. (3) is solved with all available
measurements between 640 nm and 850 nm.
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where L(λ) is the measured total upwelling radiance, and w(λ) is the
weight assigned to wavelength λ. w(λ) is set as the reciprocal of the
uncertainty of the radiance. In this study, sensor noise is considered as
the only source of uncertainty, and w(λ) can be calculated with SNR
and measured radiance L(λ) (Eq. (4)).
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where un(λ) is the uncertainty due to sensor noise.
The best Nf and Nr (using these numbers of basis spectra can provide

the best reconstruction accuracy) can be different for different data, and
the selection of Nf and Nr is not trivial. The best Nf for data with dif-
ferent combinations of SR and SNR obtained for the SCOPE dataset (to
be introduced in Section 2.3.1) can be used as reference to select the
proper Nfs for the reconstructions with other data. However, the proper
Nr cannot be determined in a way similar to the determination of Nf

because of its large range of variation and high uncertainty. To solve
this problem, the Bayesian Information Criterion (BIC) (Schwarz, 1978)
is adopted to self-adaptively select Nr. Under the assumption that the
errors of modeled total upwelling radiance (L ( )) are independent and
normally distributed, BIC can be calculated as (Schwarz, 1978):

n RSS n k nBIC ln( / ) ln( )= + (5)

where nλ is the number of wavelengths used, k is the number of coef-
ficients to be determined and equals to Nf +Nr (as mentioned above, Nf

is already determined), and RSS is the residual sum of squares of total
upwelling radiance. RSS is calculated as:

RSS w L L( )[ ( ) ( )]2
n

1

=
= (6)

BIC is calculated with different values of Nr, and the Nr corre-
sponding to the smallest BIC is selected for the reconstruction. It was
found that this method is not applicable to the determination of Nf.

Similarities and differences among the aFSR, FSR, F-SFM, and
SpecFit methods are given in Table 1. More detailed comparisons of
aFSR with the other three methods are presented in Section 4.2.

2.2. Training datasets and feature extraction of SIF and the reflectance
factor

The aFSR, FSR, and F-SFM methods use training datasets for feature
extraction (generation of basis spectra) of the SIF spectrum or spectra of
both SIF and the reflectance factor. These training datasets were gen-
erated by the Soil Canopy Observation, Photochemistry and Energy
fluxes model (SCOPE, version 1.60), which is an integrated model of RT
and energy balance and can simulate the spectra of TOC outgoing

Fig. 1. Exemplary spectra of total upwelling radiance (blue solid line) and
Solar-Induced chlorophyll Fluorescence (SIF) radiance (red dashed line) at top-
of-canopy (TOC). The shaded region indicates the spectrally-integrated SIF.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Similarities and differences among the four SIF spectrum reconstruction algorithms.

Algorithm Modeling of the SIF
spectrum

Modeling of the spectrum of the
reflectance factor

Optimization method Other features

aFSR Linear combination of
basis spectra

Linear combination of basis
spectra

Linear least squares Directly applying curve fitting within the full spectral region of SIF emission;
self-adaptively selecting the number of basis spectra of the reflectance factor

FSR Linear combination of
basis spectra

– Linear least squares Using the spectral fitting method to retrieve SIF radiance at several absorption
lines

F-SFM Linear combination of
basis spectra

Linear combination of basis
spectra

Linear least squares Using the apparent reflectance factor outside the major absorption wells to
approximate the reflectance factor inside and near those wells; introducing an
iterative process

SpecFit Pseudo-Voigt functions Piecewise cubic spline function Non-linear least
squares

Directly applying curve fitting within the full spectral region of SIF emission

F. Zhao et al. Remote Sensing of Environment 219 (2018) 233–246

235



radiance, the reflectance factor, and fluorescence radiance for homo-
geneous canopies (van der Tol et al., 2009). To make the training da-
tasets representative of the majority of actual scenes, the cases were
generated by randomly varying the 15 most influential SCOPE input
parameters (Zhao et al., 2014; Verrelst et al., 2015) with a uniform
distribution within their reasonable ranges.

Due to the re-absorption of red fluorescence by chlorophyll, the SIF
spectra observed at TOC for canopies with low Cab are quite different
from those for canopies with medium or high Cab, as shown in Fig. 2a
for canopies with Cab of 5 μg·cm−2 (low) and 40 μg·cm−2 (medium).
Therefore, two different training datasets were simulated for extraction
of basis spectra of TOC SIF. Training dataset I was generated for ca-
nopies with low Cab (< 10 μg·cm−2), and training dataset II for ca-
nopies with medium or high Cab (≥10 μg·cm−2). The threshold of
10 μg·cm−2 was chosen based on testing results (details can be found in
the companioning Supplementary Data). However, the influence of Cab

on the spectrum of the reflectance factor is not as significant as on the
SIF spectrum (Fig. 2b). Therefore, the training dataset for extraction of
basis spectra of the TOC reflectance factor (referred to as training da-
taset III) was simulated without differentiation of Cab.

Each of the three training datasets consists of 1600 spectra simu-
lated for different cases. The spectra cover the range of 640–850 nm
with both SR and spectral sampling interval (SSI) equal to 1 nm. The
ranges of Cab for the three datasets are listed in Table 2, while the
definitions and ranges of the other 14 variables can be found in the
Supplementary data. The remaining input parameters were fixed at
their default values, and nadir viewing angle was used for all simula-
tions.

The Singular Value Decomposition (SVD) technique (Press et al.,
2007) was used to extract basis spectra from training datasets. Fig. 3
shows the first three basis SIF spectra (Fig. 3a and b) and the first four
basis spectra of the reflectance factor (Fig. 3c). For canopies with low
Cab, the left peak of the first basis spectrum of SIF is higher than the
right one (Fig. 3a), while the opposite is true for canopies with
medium/high Cab (Fig. 3b). It can be seen that the first basis spectra of
SIF (BS1 of Fig. 3a–b) and the reflectance factor (BS1 of Fig. 3c) capture
the dominate shapes of the spectra. The other basis spectra show some
subtle features. For instance, the second and third basis SIF spectra can
be used to adjust the peak-difference and the depth of the middle valley
of the SIF spectrum, respectively.

2.3. Simulated test datasets

Three simulated datasets were generated to evaluate the re-
construction accuracies of the SIF spectra. The impacts of sensor spec-
tral configurations (SR and SNR), atmospheric effect, canopy char-
acteristics and directional effects were considered.

2.3.1. Dataset simulated by the SCOPE model
The performance of the SIF spectrum reconstruction under a wide

range of sensor spectral configurations was evaluated by a test dataset
simulated by the SCOPE model (referred to as the SCOPE dataset). This
dataset consists of 167 cases generated by randomly assigning values to
the input parameters of the model (the same way as described in
Section 2.2). For each case, the TOC spectra of total upwelling radiance
and SIF radiance with different sensor spectral configurations were si-
mulated. The corresponding spectra of the incident irradiance were also
provided. Ten SRs (ranging from 0.1 nm to 1 nm with an increment of
0.1 nm) and eleven SNRs (ranging from 100 to 1000 with a regular
logarithmic interval of 0.1 with base 10) were considered. The SCOPE
model was coupled with the MODTRAN (version 5.2.1) model to si-
mulate noise-free spectra with SSI of 1 cm−1. Then the spectra were
convolved by Gaussian functions and contaminated by random white
Gaussian noise using the method by Damm et al. (2011) to simulate the
spectra for any combinations of given SR and SNR. The SSIs of the
spectra were set to be half of the corresponding SR values, and nadir
viewing angle was used for the simulations. This dataset was generated
independently of the training datasets.

2.3.2. Dataset simulated for the FLEX/Sentinel-3 Bridge study
A dataset for the FLEX/Sentinel-3 Bridge study (Verhoef et al.,

2018) (referred to as the Bridge dataset) was generated by coupling the
SCOPE model (version 1.60) with the MODTRAN (version 5.2.1) model.
It contains 10 output layers of simulated TOC/TOA/atmospherically
corrected spectra of the radiance, the reflectance factor, and SIF ra-
diance for 40 cases comprising various soil, leaf, canopy or atmosphere
parameters. The TOC noise-free radiance spectra of canopy (layer 2)
and white Lambertian reference panel (layer 3) were used to investigate
the SIF reconstruction accuracy for TOC noise-free data. Atmo-
spherically corrected spectra (of TOC irradiance/π and apparent re-
flectance in layers 5 and 6, respectively) obtained from noisy TOA ra-
diance data were used to explore the potential to reconstruct the SIF
spectra for atmospherically corrected spaceborne measurements. The
method of the University of Valencia (for compatibility with the end-to-
end simulator of the FLEX mission) was adopted for the atmospheric
correction to obtain layers 5 and 6 (Verhoef et al., 2018). Errors of the
atmospherically corrected data are caused by ignoring surface aniso-
tropy and adjacency effects, the truncation of a geometrical series of
TOA radiance, and sensor noise (detailed information can be found in
the Supplementary Data). The SIF spectra range from 670 nm to
780 nm, and other simulated spectra cover the range from 500 nm to

Fig. 2. a) Exemplary SIF spectra for canopies with
low Cab (5 μg·cm−2, blue solid line) and medium Cab

(40 μg·cm−2, red dashed line). b) Exemplary spectra
of the reflectance factor for canopies with low Cab

(5 μg·cm−2, blue solid line) and medium Cab

(40 μg·cm−2, red dashed line). (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Ranges of the chlorophyll content for the three datasets.

Range of chlorophyll content (μg·cm−2)

Training dataset I 0.4–10
Training dataset II 10–80
Training dataset III 0.4–80
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780 nm. The SRs, SSIs and SNRs were set to be the same as those pro-
jected for the instruments onboard the FLEX and Sentinel-3 satellites
(Donlon et al., 2012; ESA, 2015; Coppo et al., 2017). The SRs are higher
around O2-A and O2-B absorption lines (0.3 nm) than at other wave-
lengths (0.6–3 nm). Please refer to Verhoef et al. (2018) for more de-
tailed information about this dataset.

2.3.3. Dataset generated by the FluorWPS model
A third test dataset (referred to as the FluorWPS dataset) was gen-

erated using the Fluorescence model with Weighted Photon Spread
method (FluorWPS model) (Zhao et al., 2016). This model is based on
the 3-D Monte Carlo ray-tracing method rather than the four-stream RT
theory adopted for 1-D canopies in the SCOPE model. Thus, the po-
tential problems caused by using the same model (SCOPE) to generate
both training and test datasets can be avoided. Furthermore, the RT of
SIF in a 3-D canopy can be faithfully simulated by FluorWPS, so the
capability of the aFSR method to retrieve the SIF spectra for hetero-
geneous canopies can be evaluated. Therefore, this dataset can serve as
a valuable supplement to the other two. Eight cases of explicit vege-
tative scenes with different canopy structures (1-D, 2-D and 3-D), LAI,
Cab, and carotenoid content (Cca) were generated for RT simulation by
FluorWPS. The parameters of each case are listed in Table 3 and

generated scenes of case 1 (1DLAI0.9Cab40), case 4 (2DLAI0.9Cab40),
and case 8 (3DLAI0.9Cab40) are displayed in Fig. 4. For each case, TOC
spectra of total upwelling radiance and SIF radiance were calculated at
different viewing zenith angles (VZA, 0°–70° with an increment of 5°) in
the principal plane. Both forward and backward directions were con-
sidered, resulting in a total of 29 viewing angles for each case. Sun
zenith and azimuth angles were fixed at 30° and 140°, respectively.
Other parameters were set to be consistent among the cases. These
parameters include the spectra of incident irradiance and the soil re-
flectance factor, water content (0.01 g·cm−2), senescent material (0.1),
dry matter content (0.005 g·cm−2), leaf inclination distribution type
(uniform), and fluorescence quantum yield efficiency for photosystem I
(0.004) and photosystem II (0.02). By comparing the results for dif-
ferent cases, the impact of canopy structure, LAI and Cab on the SIF
spectrum reconstruction can be investigated. The spectra range from
640 nm to 850 nm, and the SR, SSI and SNR of the spectra were set to
0.3 nm, 0.15 nm and 1000, respectively. This sensor spectral config-
uration is similar to that of the spectrometer used to obtain the ex-
perimental data.

2.4. Experimental dataset

The experimental and simulated datasets with the same nominal
sensor specification may be quite different due to the high variability
inherent to natural environments and the associated difficulties of ob-
taining accurate and representative experimental data (Zhao et al.,
2015b). These uncertain factors may influence the reconstruction of SIF
spectrum. Therefore, testing the aFSR method with experimental data is
still meaningful and necessary.

Field experiments were conducted in 2016 at the National Precision
Agriculture Demonstration Base located north of Beijing, China
(40°11′N, 116°27′E). Diurnal variations of the upwelling radiance
spectra of winter wheat and reference panel were measured by a cus-
tomized Ocean Optics QE Pro spectrometer (Ocean Optics, Dunedin, FL,
USA) within the spectral range of 645–805 nm and with SR of 0.31 nm,
SSI of 0.155 nm, and SNR (maximum possible value) of 1000. Fourteen
and seventeen measurements were carried out under clear sky condi-
tions on April 18 (jointing stage) and May 17 (filling stage), 2016,

Fig. 3. The first three basis SIF spectra extracted from training dataset I for canopies with low Cab (a) and training dataset II for canopies with medium/high Cab (b);
and the first four basis spectra of the reflectance factor extracted from training dataset III for all canopies (c).

Table 3
Canopy characteristics of the eight cases.

Case Canopy structure LAI Cab (μg·cm−2) Cca (μg·cm−2) Identifier

1 Homogeneous (1-
D)

0.9 40 10 1DLAI0.9Cab40

2 Homogeneous (1-
D)

2.1 40 10 1DLAI2.1Cab40

3 Homogeneous (1-
D)

3.4 40 10 1DLAI3.4Cab40

4 Row (2-D) 0.9 40 10 2DLAI0.9Cab40
5 Row (2-D) 2.1 20 5 2DLAI2.1Cab20
6 Row (2-D) 2.1 40 10 2DLAI2.1Cab40
7 Row (2-D) 2.1 60 15 2DLAI2.1Cab60
8 Heterogeneous (3-

D)
0.9 40 10 3DLAI0.9Cab40

Fig. 4. Generated scenes for cases 1, 4, and 8: a) side view of 1-D canopy (case 1, 1DLAI0.9Cab40), b) side view of 2-D row canopy (case 4, 2DLAI0.9Cab40), c) side
view and d) vertical view of 3-D heterogeneous canopy (case 8, 3DLAI0.9Cab40).
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respectively. More detailed information about this dataset can be found
in Liu et al. (2017).

A summary of the main features of the simulated and experimental
datasets is given in Table 4.

2.5. Accuracy assessment of the reconstructed SIF spectrum

For simulated test datasets, the reconstructed SIF spectra can be
compared with the true simulated spectra to evaluate the reconstruc-
tion accuracies. The relative root-mean-square error (RRMSE) is a scale-
independent indicator of the accuracy of reconstructed SIF spectra and
is used for later comparisons. It is calculated by Eq. (7):

( )
RRMSE

n
100%j

n F F
F

1

( ) ( )
( )

2rec i t i
t i

, ,
,

= ×=

(7)

where Frec,i(λ) and Ft,i(λ) are the retrieved and true SIF radiance of case i
at wavelength λ, respectively, j is the index for different cases or wa-
velengths and n is the number of cases. The average of the RRMSEs of
different cases is also calculated to measure the overall reconstruction
accuracy for both different cases and different wavelengths.

Since RRMSE cannot reveal whether the algorithms tend to over-
estimate or underestimate SIF radiance, average relative errors (AREs)
are adopted and calculated by Eq. (8):

ARE
n

100%i

n F F
F

1

( ) ( )
( )

rec i t i
t i

, ,
,

= ×=
(8)

The absolute relative errors and the average absolute relative errors
(AARE, Eq. (9)) of the spectrally-integrated SIF are also calculated since
the spectrally-integrated SIF is valuable for the estimation of photo-
synthesis rates and is one of the planned L2 products of the FLEX
mission.

AARE
n

100%i

n F F

F
1

rec i
int

t i
int

t i
int

, ,

,= ×=
(9)

where Frec, iint and Ft, iint are the retrieved and true spectrally-integrated
values of the SIF spectra for case i, respectively. The FLEX mission aims
to retrieve the spectrally-integrated SIF with the absolute relative
error < 10% (ESA, 2015), which is therefore adopted as a criterion of
tolerable reconstruction accuracy for later analyses.

For the experimental dataset, absolute reconstruction accuracy
cannot be directly calculated since the actual SIF spectra are unknown.
However, it is feasible to compare the SIF spectra reconstructed by four
different methods against each other to document their relative dif-
ferences. By reference to the strategy adopted by the radiation transfer
model intercomparison exercise (Widlowski et al., 2013), where the
true value of the target quantity is also unknown, we compared the SIF
spectra reconstructed by each method with the reference spectra cal-
culated as the average of the SIF spectra reconstructed by the other
three methods. To quantify the difference between the SIF spectra re-
constructed through each method and the reference SIF spectra, the
coefficient of determination (R2), root-mean-square error (RMSE),
standard deviation (STD), and bias (mean error) between them were
calculated.

3. Results

In this section, the accuracy of the aFSR method is evaluated by four
test datasets. The results of the FSR, F-SFM, and SpecFit methods are
also provided for comparison.Ta
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3.1. Results for the SCOPE dataset

Contours of the average RRMSE of the reconstructed SIF spectra
(average of the RRMSE for all cases) as a function of SR and SNR (in
logarithmic scale) are displayed as solid lines in Fig. 5. The dashed lines
added to the contour maps show the contours of AARE of the spectrally-
integrated value of reconstructed SIF spectra equal to 10%. The regions
to the upper left of the dashed lines correspond to AAREs that are <
10%, which means that the accuracy standard set by the FLEX mission
is achieved. Among the four method, the aFSR method can achieve this
accuracy standard with minimum requirement of spectral resolving
power and SNR (e.g., SR ≤ 0.6 nm and SNR ≥ 200). The reconstruction
accuracy of aFSR deteriorates when both spectral resolving power
(negatively related to SR) and SNR, or either of them, decrease. Similar
trend is also found for the FSR, F-SFM, and SpecFit methods. For most
combinations of SR and SNR, the aFSR method provides the highest
reconstruction accuracies. For instance, for the data with SR and SNR
similar to those of the FluorWPS and experimental datasets
(SR = 0.3 nm, SNR = 1000), the average RRMSE is 4.1% for the aFSR
method and 7.1%, 5.1%, and 12.5% for the FSR, F-SFM, and SpecFit
methods, respectively.

The numbers of basis spectra of SIF and reflectance factor (Nfs and
Nrs) used by the aFSR, FSR, and F-SFM methods for data with different
SRs and SNRs are presented in Table 5, since they partially determine the
accuracies of these methods. The cells with AARE of the spectrally-in-
tegrated SIF < 10% are highlighted in yellow. Due to limited space, we
only present Nfs and Nrs for data with SNR higher than 300 (which is
more widely adopted by field spectrometers). It is found that the number
of basis spectra used by those methods generally increase with the in-
crease of spectral resolving power and SNR. For data with the same SR
and SNR, Nf used for aFSR is always larger than or equal to that for FSR
and F-SFM. Nrs for aFSR are average values because the Nrs determined

for different cases with the same SR and SNR can be different. The de-
termination of these Nfs and Nrs is discussed in Sections 4.1 and 4.2.

3.2. Results for the Bridge dataset

RRMSEs of the SIF spectra reconstructed for TOC noise-free data
and atmospherically corrected data in the Bridge dataset are shown in
Fig. 6a and b, respectively. For the TOC noise-free data, the aFSR
method generally provides the highest reconstruction accuracy with
RRMSEs < 4.8% for all wavelengths (Fig. 6a) and with relative errors of
the spectrally-integrated SIF < 10% for all cases. Higher reconstruction
accuracies are observed at around O2-A and O2-B absorption lines,
where the most important information for the reconstruction is pro-
vided (Fig. 6a). The FSR, F-SFM and SpecFit methods can also re-
construct SIF spectrum with relatively high accuracy (RRMSEs < 10%
for most wavelengths), but the aFSR method provides the highest re-
construction accuracy at wavelengths longer than 709 nm (Fig. 6a).

When the effect of atmospheric correction is considered, the range
of RRMSE for aFSR increases from 1.2%–4.8% (Fig. 6a) to 7.5%–14.4%
(Fig. 6b). Higher RRMSEs are observed around the O2-A and O2-B ab-
sorption lines, where larger atmospheric correction errors occur (see
the Supplementary data). At all wavelengths, the highest reconstruction
accuracies are provided by aFSR (Fig. 6b). Moreover, the aFSR method
achieves the accuracy with the absolute relative error of the spectrally-
integrated SIF < 10% for more cases than the other three methods:
82.5% compared with 37.5%, 60%, and 12.5% for FSR, F-SFM, and
SpecFit, respectively. The results achieved are based on the typical
equation which describes the TOC radiance as additive combination of
reflected and fluorescence radiance. Improved results may be obtained
by using the coupling process suggested in (Sabater et al., 2017), which
needs further investigation.

Fig. 5. Contours of the average RRMSE of the SIF
spectra reconstructed by aFSR (a), FSR (b), F-SFM
(c), and SpecFit (d) as a function of spectral resolu-
tion (SR) and signal-to-noise ratio (SNR) (solid
lines). The dashed lines show the contours of 10%
AARE of the spectrally-integrated SIF. The axes for
SNR are plotted on logarithmic scale.
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3.3. Results for the FluorWPS dataset

The RRMSEs of the SIF spectra reconstructed through aFSR as well
as the FSR, F-SFM, and SpecFit methods under different viewing angles
in the principal plane are shown in Fig. 7 for each case. The RRMSE
distributions for different sensor spectral characteristics are similar.
Due to limited space, we only present the results for data with SR and
SNR of 0.3 nm and 1000, respectively.

It can be seen that the highest reconstruction accuracy is generally
provided by aFSR. Except for the hot spot direction, an accuracy of 10%
absolute relative error of the spectrally-integrated value of re-
constructed SIF spectrum can always be achieved by the aFSR method,
while it is achieved by the FSR, F-SFM and SpecFit methods for 84%,
94%, and 66% of the cases, respectively. Compared with the other
methods, the accuracy of aFSR is less affected by viewing angles, which
implies that the aFSR method can be applied to data observed at ob-
lique viewing angles. Local maxima of RRMSE are frequently observed
at the hot spot direction (30°) for aFSR as well as the other three
methods, which is caused by the anisotropy of surface reflectance. At
the hot spot direction, the bi-directional reflectance factor (BRF) is
significantly higher than the hemispheric-directional reflectance factor
(HDRF). Hence the shorter photon path corresponding to solar incident
and directly reflected sunrays receives more weight, and in that case

atmospheric absorption lines appear to be shallower compared with the
cases where BRF and HDRF are similar (Cogliati et al., 2015b; Verhoef
et al., 2018). Consequently, the shallower absorption line may be
misinterpreted as an in-filling effect due to SIF and lead to an over-
estimation of SIF (as shown in Fig. 8). It should be noted that the
highest reconstruction accuracy is still generally provided by the aFSR
method at the hot spot direction.

Fig. 8 shows the contours of average relative error (ARE) of re-
trieved SIF radiance as a function of VZA and wavelength. Absolute
AREs of the aFSR method are generally < 10% at wavelengths longer
than 685 nm, which are usually lower than those by the FSR and
SpecFit methods. When the viewing angle deviates from the hot spot
direction, the error patterns for all the methods change around 690 nm,
which may be explained by the model difference between FluorWPS
and the SCOPE model and is explained in Section 4.2.

The impact of canopy structure on the reconstruction accuracy of
the SIF spectrum can be evaluated by analyzing two groups' results.
Each group consists of cases with different canopy structures but the
same LAI and Cab: 1) case 1 (1DLAI0.9Cab40), case 4 (2DLAI0.9Cab40),
and case 8 (3DLAI0.9Cab40); 2) case 2 (1DLAI2.1Cab40) and case 6
(2DLAI2.1Cab40). The averages of the RRMSEs at different VZAs are
given in Table 6 for all cases in the two groups. Since no systematic
influence of pigment contents (Cab and Cca) and LAI on the

Table 5
The numbers of basis SIF spectra (Nfs) and the average numbers of basis spectra of the reflectance factor (average Nrs) used for aFSR, Nfs used for FSR, and the
combinations of Nf and Nr used for F-SFM for data with different SRs and SNRs in the SCOPE dataset. The cells with AARE of the spectrally-integrated SIF < 10% are
highlighted in yellow.

Method SR (nm) 
SNR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

aFSR 

316 3, 10.2 a 2, 9.6 2, 9.4 2, 9.2 2,9.1  2, 8.9 2, 8.9 2, 8.7 2, 8.6 2, 8.6 
398 3, 10.8 3, 10.1 2, 9.6 2, 9.5 2, 9.5 2, 9.3 2, 9.2 2, 9.1 2, 8.9 2, 9.0 
501 3, 11.4 3, 10.43, 10.12, 10.0 2, 9.8 2, 9.7 2, 9.5 2, 9.4 2, 9.3 2, 9.4 
631 3, 12.3 3, 11.23, 10.73, 10.22, 10.32, 10.12, 10.1 2, 9.9 2, 9.8 2, 9.7 
794 4, 12.6 3, 11.93, 11.13, 10.93, 10.52, 10.82, 10.52, 10.42, 10.22, 10.2

1000 4, 13.2 3, 12.53, 12.13, 11.43, 11.13, 10.93, 10.72, 11.13, 10.42, 10.7

FSR 

316 2 b 2 2 2 2 2 2 1 1 2 
398 2 2 2 2 2 2 2 2 1 2 
501 2 2 2 2 2 2 2 2 1 2 
631 3 2 2 2 2 2 2 2 2 2 
794 3 2 2 2 2 2 2 2 2 2 

1000 3 2 2 2 2 2 2 2 2 2 

F-SFM 

316 2, 8 c 2, 9 2, 11 2, 9 2, 9 2, 8 2, 9 2, 7 1, 9 1, 9 
398 2, 24 2, 9 2, 24 2, 11 2, 9 2, 8 1, 9 2, 9 2, 9 1, 9 
501 2, 24 2, 24 2, 11 2, 16 2, 9 2, 9 2, 9 2, 8 2, 9 2, 9 
631 2, 24 2, 15 2, 15 2, 13 2, 11 2, 9 2, 9 2, 9 2, 11 2, 8 
794 2, 24 2, 24 2, 23 2, 24 2, 11 2, 11 2, 13 2, 9 2, 9 2, 11 

1000 2, 24 2, 24 2, 24 2, 24 2, 11 2, 21 2, 13 2, 21 2, 11 2, 20 

aNf, average Nr; bNf; cNf, Nr.

Fig. 6. RRMSEs of the SIF spectra reconstructed by
aFSR (blue solid lines), FSR (red dashed lines), F-
SFM (black dotted lines), and SpecFit (cyan dash-dot
lines) for simulated TOC noise-free data (a) and at-
mospherically corrected data (b) at different wave-
lengths. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 8. Contours of the average relative error of the SIF spectra reconstructed through aFSR (a), FSR (b), F-SFM (c), and SpecFit (d) as a function of VZA and
wavelength. The negative zenith angles correspond to forward direction while the positive ones correspond to backward direction.

Fig. 7. Changes of RRMSEs of the SIF spectra reconstructed through aFSR (blue solid lines), FSR (red dashed lines), F-SFM (black dotted lines), and SpecFit (cyan
dash-dot lines) for the eight cases with respect to viewing zenith angle (VZA). The negative VZAs correspond to forward directions while the positive ones correspond
to backward directions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reconstruction accuracy of the SIF spectrum is observed, the compar-
ison results of average RRMSE for these factors are not presented here.

With the increase of canopy heterogeneity (from 1-D to 3-D), the
maximum variations of the average RRMSEs with canopy structure in
the two groups are > 3% for F-SFM and SpecFit. However, the max-
imum variations for aFSR and FSR are relatively lower: 1.10% and
0.50%, respectively. Besides, the aFSR method provides higher ac-
curacies than the FSR method, demonstrating that the aFSR method can
consistently provide high accuracies for canopies with different 3-D
structures.

3.4. Results for the experimental dataset

Fig. 9 shows the diurnal variations of the SIF spectrum re-
constructed by aFSR and the other three methods for the field experi-
mental dataset obtained on April 18 and May 17, 2016. Shapes and

diurnal variation trends of the SIF spectrum reconstructed by aFSR
show high consistency with those by the other three methods. The red
and far-red SIF peaks are successfully reconstructed and the shapes of
the reconstructed spectra are reasonable according to other early stu-
dies (Meroni et al., 2009). Furthermore, the magnitude of the re-
constructed SIF spectra at both O2-A and O2-B bands agree well with
those reported in the other studies (Liu et al., 2013; Cogliati et al.,
2015a; Rossini et al., 2016). It is also observed that the SIF radiance
generally increases in the morning and decreases in the afternoon,
which agrees with the diurnal variation of incident irradiance and is
consistent with earlier studies (Liu et al., 2013; Zhao et al., 2014). At
12:30 pm on April 18, and at 11:03 am on May 17, the reconstructed SIF
spectra are abnormal in that they are not in accord with the diurnal
variation trend of the reconstructed spectra, which may be caused by
uncertain experimental factors.

The SIF spectra reconstructed by each method were compared with

Fig. 9. Diurnal variations of the SIF spectra re-
constructed through aFSR (blue solid lines), FSR (red
dashed lines), F-SFM (black dotted lines), and
SpecFit (cyan dash-dot lines), for measurements on
April 18, 2016 (a) and May17, 2016 (b) at the
National Precision Agriculture Demonstration Base
located north of Beijing, China. The reconstructed
SIF spectra are abnormal at 12:30 pm on April 18,
and at 11:03 am on May 17. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 6
Average of the RRMSEs for different VZAs for cases with different canopy structures.

Method Group 1 Group 2

1DLAI0.9Cab40 2DLAI0.9Cab40 3DLAI0.9Cab40 1DLAI2.1Cab40 2DLAI2.1Cab40

aFSR 8.46%
(8.10%)

8.92%
(8.71%)

9.56%
(9.37%)

7.53%
(7.38%)

7.58%
(7.49%)

FSR 15.36%a

(14.58%b)
15.70%
(15.11%)

15.86%
(15.29%)

10.28%
(9.93%)

10.77%
(10.41%)

F-SFM 10.87%
(10.40%)

11.78%
(11.37%)

13.93%
(13.69%)

8.45%
(8.36%)

8.52%
(8.56%)

SpecFit 16.22%
(15.43%)

16.86%
(15.96%)

19.77%
(18.80%)

9.42%
(8.88%)

10.83%
(10.39%)

a Average of RRMSEs for all VZAs.
b Average of RRMSEs for all VZAs except 30° (corresponding to the hot spot direction).
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the reference spectra which were calculated as the average of the SIF
spectra reconstructed through the other three methods. The statistics
R2, RMSE, STD, and bias were calculated and listed in Table 7. It is
shown that the SIF spectra reconstructed by aFSR are closely in
agreement with the reference spectra (with R2 higher than 0.93 and
RMSE lower than 0.09 W·m−2·sr−1·μm−1). The close agreement implies
that aFSR is also applicable to actual experimental data, since the FSR,
F-SFM, and SpecFit methods have been validated by other experimental
datasets before. It should be noted that the statistics do not reflect the
absolute reconstruction accuracy since the true SIF spectra is unknown.

4. Discussions

4.1. Determination of the numbers of basis spectra used for the aFSR method

The number of basis spectra used can affect reconstruction accu-
racy. Theoretically, more basis spectra can better represent the spectra
of SIF or the reflectance factor. However, if more basis spectra are used,
more coefficients need to be determined. Since the information content
provided by given remote sensing data is limited, the more coefficients
need to be determined, the less information is allocated to each coef-
ficient. Consequently, the coefficients may not be accurately retrieved,
and reconstruction error occurs.

By referring to Table 5, Nf was determined to be 3 for the FluorWPS
dataset and the TOC noise-free data in the Bridge dataset. For the at-
mospherically corrected data in the Bridge dataset and the experi-
mental dataset, the uncertainty of the data is higher than that of si-
mulated TOC data with the same nominal sensor characteristics.
Therefore, a relatively conservative strategy was used for the determi-
nation of Nf for the experimental dataset: using 2 basis spectra. The
determined Nfs and the average Nrs for the Bridge, FluorWPS, and ex-
perimental datasets are presented in Table 8.

It is observed in Tables 5 and 8 that Nr is always larger than Nf.
Since reflected radiance dominates the total TOC radiance (generally
contributes to larger than 75% of the total TOC radiance except for
wavelengths around the O2-B absorption line), small errors in the es-
timation of the reflectance factor can lead to large deviation of the

estimated reflected radiance and consequently the retrieved SIF ra-
diance. So, more basis spectra of the reflectance factor are used to ac-
curately fit the spectrum of the reflectance factor. The Nr chosen by BIC
is generally different from the Nr determined by the best Nf and Nr

determination method (to be explained in Section 4.2). However, the
accuracies of the SIF spectrum reconstructed with Nr determined by
these two methods are quite close (see Supplementary data), indicating
that BIC can be used as a proper method to determine Nr for the aFSR
method.

4.2. Comparison with the other three SIF spectrum reconstruction methods

The aFSR method is similar to the FSR and F-SFM methods in that they
all exploit training datasets for feature extraction of the spectra of SIF and
the reflectance factor (the aFSR and F-SFM methods) or the SIF spectrum
(the FSR method). The accuracy of these methods depends on the re-
presentativeness of the training datasets. For instance, by comparing the
SIF spectrum reconstruction accuracies for data with the same viewing
direction (VZA = 0°) and spectral characteristics (SR = 0.3 nm and
SNR = 1000) in the SCOPE and FluorWPS datasets, it is found that ac-
curacies of the aFSR, FSR, and F-SFM methods for the FluorWPS dataset
(Fig. 7) are generally lower than those achieved for the SCOPE dataset
(Fig. 5): for data in the FluorWPS dataset, the average RRMSEs for 1-D
canopies are 8.1%, 10.6%, and 7.2% for the aFSR, FSR, and F-SFM
methods, respectively; for data in the SCOPE dataset, the average RRMSEs
for those methods are 4.1%, 7.1%, and 5.1%, respectively. However, for
the SpecFit method which does not exploit training datasets, the average
RRMSE for 1-D canopies in the FluorWPS dataset (11.4%) is similar to that
for data in the SCOPE dataset (12.5%). The degradation of the accuracy of
the aFSR, FSR, and F-SFM method and the pattern changes of ARE for the
retrieved SIF radiance around 690 nm (Fig. 8) can be explained by the
difference between the SCOPE and FluorWPS models. According to Zhao
et al. (2016), the SIF radiance at wavelengths longer than 690 nm simu-
lated by the FluorWPS model is systematically higher than that simulated
by the SCOPE model, while the SIF radiance at wavelengths shorter than
690 nm simulated by the two models agrees better. The deviation of the
two models introduces errors when fitting the FluorWPS-generated SIF
spectra based on the training dataset simulated by SCOPE. The difference
of the SIF spectra simulated by the two models is mainly caused by the
different formulations used to calculate the scattering contributions to SIF
(Zhao et al., 2016). Theoretically, the SIF spectra simulated by the
FluorWPS model should be more accurate. But the training datasets are still
simulated by the SCOPE model since simulating thousands of cases by the
FluorWPS model is very time consuming. Now we are working to improve
the efficiency of the FluorWPS model to make it applicable to such large
numbers of simulations.

While the FSR and F-SFM methods mainly exploit information
around discrete solar or telluric absorption lines to determine the
coefficients of the basis SIF spectra, the aFSR method uses all available
bands in the SIF emission region. Since more information is used by
aFSR, the reconstruction is more robust and accurate. Also, more
coefficients can be reliably determined. For the same data, Nf for the
aFSR method is usually larger than or at least equal to that for the FSR
and F-SFM methods. For instance, four basis SIF spectra can be used by

Table 8
Nfs and average Nrs used by the aFSR method for the Bridge, FluorWPS, and
experimental datasets.

Method The Bridge
dataset
(TOC noise-
free)a

The Bridge dataset
(atmospherically
corrected)b

The
FluorWPS
datasetc

The
experimental
datasetd

aFSR 3, 16.1e 2, 10.1 3, 27.8 2, 29.4

a SR is set to be the same as those of the instruments onboard the FLEX and
Sentinel-3 satellites.

b SR and SNR are set to be the same as those of the instruments onboard the
FLEX and Sentinel-3 satellites.

c SR and SNR are set as 0.3 nm and 1000, respectively.
d SR and SNR are 0.31 nm and 1000, respectively.
e The number of basis SIF spectra (Nf) and the average number of basis

spectra of the reflectance factor (average Nr).

Table 7
Statistics obtained by comparing the SIF spectra reconstructed through one method with the reference SIF spectra.

April 18, 2016 May17, 2016

aFSR FSR F-SFM SpecFit aFSR FSR F-SFM SpecFit

R2 0.9605 0.9933 0.9947 0.9397 0.9327 0.9907 0.9896 0.9196
RMSE

(W·m−2·sr−1·μm−1)
0.0799 0.0319 0.0284 0.0951 0.0867 0.0309 0.0328 0.959

STD (W·m−2·sr−1·μm−1) 0.0799 0.0313 0.0281 0.0951 0.0843 0.0308 0.0326 0.0921
Bias (W·m−2·sr−1·μm−1) −0.0010 −0.0064 0.0042 0.0032 −0.0202 −0.0035 −0.0029 0.0266
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aFSR to reconstruct the SIF spectra for data with SR = 0.1 nm and
SNR ≥ 794 in the SCOPE dataset, while only 2 or 3 basis spectra can be
used by the FSR and F-SFM methods (Table 5).

In this study, the Nfs and Nrs used for the FSR and F-SFM methods
are determined by the best Nf and Nr determination method: for data
with each sensor spectral configuration in every simulated dataset, the
SIF spectra were reconstructed by employing different numbers of basis
spectra, then the Nfs or the combinations of Nf and Nr that provide the
highest reconstruction accuracy with respect to the true SIF spectra
were selected; for experimental datasets, the numbers of basis spectra
that provide reconstrcted SIF spectra with the most reasonable shapes
and magnitudes according to earlier studies were selected, which is
rather subjective. The determination of Nr is more difficult than that of
Nf because Nr has a larger range of variation and its relationship to
sensor spectral characteristics is less evident: as shown in Table 5, the
best Nr for F-SFM ranges from 7 to 24 and its relationship to SR and SNR
is not monotonic. Therefore, it is difficult to determine a proper Nr

simply based on prior knowledge. When Nr is not properly determined,
the accuracy of the F-SFM method is limited. In contrast, this problem is
avoided by the aFSR method by adopting BIC to self-adaptively select
proper Nr. Even though the FSR and F-SFM methods use the best Nfs and
Nrs while the aFSR method self-adaptively selects Nr, the accuracy of
aFSR is generally higher than the FSR and F-SFM methods. Therefore,
the aFSR method is more appropriate to be applied to actual experi-
mental data.

The aFSR and SpecFit methods both apply spectral fitting over the
full spectral range of SIF emission. Thus, they have the advantage of
employing all available information. Unlike aFSR, SpecFit does not
require training datasets. Therefore, the problem of representativeness
of training datasets does not exist. However, the function used by
SpecFit (the sum of two Pseudo-Voigt functions) to approximate the SIF
spectrum was determined based on TOC noise-free data in an earlier
version of the Bridge dataset. This function may not be optimal for the
description of SIF spectra in other datasets. As can be seen in Section 3,
the SpecFit method can achieve high accuracy (RRMSE generally <
5.1%) for TOC noise-free data in the Bridge dataset, but it is generally
the least accurate for other simulated datasets. Besides, SpecFit needs to
determine 9 coefficients of the SIF spectrum while only 2–4 are needed
for the aFSR method. Accurately determining these 9 coefficients is
quite difficult. Furthermore, while the aFSR method adopts the linear
least squares (LLS) approach to reconstruct the SIF spectrum (Eq. (3)), a
non-linear least squares (NLLS) approach has to be used for the SpecFit
method. Normally, the NLLS approach faces more difficulties than the
LLS approach: 1) it may be trapped in local minima; and 2) a time-
consuming iterative process has to be adopted. Therefore, the aFSR
method is generally more accurate and efficient than the SpecFit
method.

4.3. Prospect of reconstructing the SIF spectrum from spaceborne
measurements

Reconstruction of the SIF spectrum from spaceborne measurements

can provide a synoptic perspective of the surface targets. Four space-
borne sensors cover the major spectral range of SIF emission with a
relatively high SR, and may have the potential to be used for SIF
spectrum reconstruction are listed in Table 9.

Among the four instruments listed in Table 9, GOME-2, SCIAMA-
CHY and TROPOMI are intended for atmospheric chemistry observa-
tions, and SIF is a serendipitous by-product of the missions. Although
only SIF at individual wavelengths or in parts of its emission range were
retrieved for these instruments in former studies, theoretically it is
feasible that the measurements of these instruments can be exploited
for SIF spectrum reconstruction. However, due to their low spatial re-
solution, the heterogeneity at canopy or stand scales cannot be accu-
rately characterized with these instruments (Verrelst et al., 2016). By
contrast, FLORIS adopts a finer and ecologically relevant spatial re-
solution of 300 m, and thus can capture the scale of individual agri-
cultural and forestry management units (ESA, 2015). Moreover, the
FLEX mission will fly in tandem with Sentinel-3 to exploit the synergy
among the sensors on board both satellites. The information provided
by Sentinel-3 (e.g., the atmospheric status) can also benefit SIF spec-
trum reconstruction from space.

5. Conclusions

In this paper, we proposed the novel aFSR method to reconstruct the
full SIF spectrum and evaluated it with simulated and experimental
datasets by a comprehensive comparison with three other existing
methods: FSR, F-SFM, and SpecFit. The impacts of SR, SNR, atmo-
spheric correction, canopy structure, leaf biochemical parameters and
directional effects on the SIF spectrum reconstruction accuracies were
considered. Results showed that while all methods could achieve the
accuracy standard set by the FLEX mission (AARE of spectrally-in-
tegrated SIF < 10%) when spectral resolving power and SNR are high
(e.g., SR ≤ 0.3 nm and SNR ≥ 700), aFSR generally provided the
highest reconstruction accuracy. The aFSR method was also more ro-
bust than other methods as it was less affected by atmospheric cor-
rection, directional effect, and canopy heterogeneity. As to the results of
experimental dataset, the SIF spectra reconstructed by aFSR agreed well
with literature in terms of shape, magnitude and diurnal variation and
were in close agreement with the other methods: the R2 and the RMSE
between the reconstruction results of aFSR and the reference spectra
calculated as the average of the SIF spectra reconstructed through the
other three methods were higher than 0.93 and lower than
0.09 W·m–2·sr–1·μm–1, respectively.

Research topics for the near future include: 1) reconstruction of the
SIF spectrum with spaceborne measurements and analysis of the impact
of atmospheric effect on reconstruction accuracy; 2) more systematic
evaluation of the impact of directional effects and canopy structures on
SIF spectrum reconstruction; and 3) generation of more representative
training datasets.

Table 9
Spectral and spatial specifications of satellite instruments that have the potential to be used to reconstruct the full SIF spectrum.

Instrument/satellite GOME-2/Metop SCIAMACHY/ENVISAT TROPOMI/Sentinel-5 FLORIS/FLEX

Spectral coverage 240–790 nm
(640–790 nma)

240–1750 nm, 1940–2040 nm, 2265–2380 nm
(640–850 nm)

270–495 nm, 675–775 nm, 2305–2385 nm
(675–775 nm)

500–780 nm
(640–780 nm)

Spectral resolution at 640–850 nm 0.48 nm 0.48–0.54 nm 0.34–0.35 nm 0.3–3 nm
Spatial resolution 40 × 80 km2b 30 × 30–240 km2c 3.5 × 7 km2 300 × 300 m2

Signal-to-noise ratio > 1000 > 1000 200–600 115–1015
Reference Joiner et al., 2013 Joiner et al., 2012 Guanter et al., 2015 ESA, 2015

a The spectral range can be exploited for full SIF spectrum reconstruction.
b GOME-2 on MetOp-A has been operating in a reduced-swath mode with a pixel size of 40 × 40 km2 since 15 July 2013.
c The spatial resolution varies along the orbit.
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